Kolmogorov type inequalities for hypersingular integrals with sign-alternating characteristic
نویسندگان
چکیده
New sharp Kolmogorov type inequalities for hypersingular integrals with homogeneous characteristic of the form $\Omega(t) = \mathrm{sgn} \prod\limits_{k=1}^m t_k$ multivariate functions from Hölder spaces are obtained.
منابع مشابه
General Minkowski type and related inequalities for seminormed fuzzy integrals
Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.
متن کاملgeneral minkowski type and related inequalities for seminormed fuzzy integrals
minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. also related inequalities to minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. several examples are given to illustrate the validity of theorems. some results on chebyshev and minkowski type inequalities are obtained.
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولFinite Part Integrals and Hypersingular Kernels
Singular integral equation method is one of the most effective numerical methods solving a plane crack problem in fracture mechanics. Depending on the choice of the density function, very often a higher order of sigularity appears in the equation, and we need to give a proper meaning of the integration. In this article we address the Hadamard finite part integral and how it is used to solve the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ?????????? ?? ???????????
سال: 2021
ISSN: ['2664-5009', '2664-4991']
DOI: https://doi.org/10.15421/241003